Custom Search

News

Monday 01 November 2004

Involvement of cytosolic Cl- in osmoregulation of alpha-ENaC gene expression.

By: Niisato N, Eaton DC, Marunaka Y.

Am J Physiol Renal Physiol 2004 Nov;287(5):F932-9

Hypotonicity stimulates transepithelial Na(+) reabsorption in renal A6 cells, but the mechanism for this stimulation is not fully understood. In the present study, we found that hypotonicity stimulated Na(+) reabsorption through increases in mRNA expression of the alpha-subunit of the epithelial Na(+) channel (alpha-ENaC). Hypotonicity decreases cytosolic Cl(-) concentration; therefore, we hypothesized that hypotonicity-induced decreases in cytosolic Cl(-) concentration could act as a signal to regulate Na(+) reabsorption through changes in alpha-ENaC mRNA expression. Treatment with the flavone apigenin, which activates the Na(+)-K(+)-2Cl(-) cotransporter and increases cytosolic Cl(-) concentration, markedly suppressed the hypotonicity-induced increase in alpha-ENaC mRNA expression. On the other hand, blockade of the Na(+)-K(+)-2Cl(-) cotransporter decreases cytosolic Cl(-) concentration and increased alpha-ENaC mRNA expression and Na(+) reabsorption. Blocking Cl(-) channels with 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) inhibited the hypotonicity-induced decrease in cytosolic Cl(-) concentration and suppressed the hypotonicity-induced increase in alpha-ENaC mRNA expression. Coapplication of NPPB and apigenin synergistically suppressed alpha-ENaC mRNA expression. Thus, in every case, changes in cytosolic Cl(-) concentration were associated with changes in alpha-ENaC mRNA expression and changes in Na(+) reabsorption: decreases in cytosolic Cl(-) concentration increased alpha-ENaC mRNA and increased Na(+) reabsorption, whereas increases in cytosolic Cl(-) concentration decreased alpha-ENaC mRNA and decreased Na(+) reabsorption. These findings support the hypothesis that changes in cytosolic Cl(-) concentration are an important and novel signal in hypotonicity-induced regulation of alpha-ENaC expression and Na(+) reabsorption.

Use of this site is subject to the following terms of use