Custom Search


Tuesday 01 June 2004

Mutations in the extracellular loop of alpha-rENaC alter sensitivity to amiloride and reactive species.

By: Chen L, Fuller CM, Kleyman TR, Matalon S.

Am J Physiol Renal Physiol 2004 Jun;286(6):F1202-8

We studied the effects of two mutations of the extracellular loop of the alpha-subunit of the (ENaC) on amiloride-sensitive current in Xenopus laevis oocytes and the inhibition of this current by 3-morpholinosydnonimine (SIN-1). Injection of oocytes with wild-type (wt) alpha-,beta-,gamma-rENaC cRNA (8.3 ng/subunit) resulted 48-72 h later in inward Na(+) currents (-5.5 +/- 0.8 microA; means +/- SE at -100 mV; n = 21), which were completely inhibited by amiloride. Oocytes injected with either alpha(Y279A)- or alpha(Y283A)- and beta-,gamma-rENaC cRNAs had significantly lower Na(+) currents. Furthermore, alpha(Y279A)-,beta-,gamma-rENaC-injected oocytes had a higher K(i) for amiloride (0.54 +/- 0.97 vs. 0.10 +/- 0.04 microM; P < 0.01). Exposure of oocytes to SIN-1 (1 mM) for 5 min decreased both total Na(+) and amiloride-sensitive currents across wt and alpha(Y279A)- but not alpha(Y283A)-,beta-,gamma-rENaC. Furthermore, exposure to SIN-1 increased the K(i) for amiloride across wt but not alpha(Y279A)-,beta-,gamma-rENaC-injected oocytes. These data indicate that both tyrosines are important for proper ENaC function and their oxidative modifications contribute to altered ENaC function.

Use of this site is subject to the following terms of use