Custom Search

News

Sunday 01 June 2003

Non-genomic regulation of intermediate conductance potassium channels by aldosterone in human colonic crypt cells.

By: Bowley KA, Morton MJ, Hunter M, Sandle GI.

Gut 2003 Jun;52(6):854-60

BACKGROUND: Aldosterone has a rapid, non-genomic, inhibitory effect on macroscopic basolateral K(+) conductance in the human colon, reducing its capacity for Cl(-) secretion. The molecular identity of the K(+) channels constituting this aldosterone inhibitable K(+) conductance is unclear. AIM: To characterise the K(+) channel inhibited by aldosterone present in the basolateral membrane of human colonic crypt cells. METHODS: Crypts were isolated from biopsies of healthy sigmoid colon obtained during colonoscopy. The effect of aldosterone on basolateral K(+) channels, and the possible involvement of Na(+):H(+) exchange, were studied by patch clamp techniques. Total RNA from isolated crypts was subjected to reverse transcriptase-polymerase chain reaction (RT-PCR) using primers specific to intermediate conductance K(+) channels (KCNN4) previously identified in other human tissues. RESULTS: In cell attached patches, 1 nmol/l aldosterone significantly decreased the activity of intermediate conductance (27 pS) K(+) channels by 31%, 53%, and 54% after 1, 5 and 10, minutes, respectively. Increasing aldosterone concentration to 10 nmol/l produced a further 56% decrease in channel activity after five minutes. Aldosterone 1-10 nmol/l had no effect on channel activity in the presence of 20 micro mol/l ethylisopropylamiloride, an inhibitor of Na(+):H(+) exchange. RT-PCR identified KCNN4 mRNA, which is likely to encode the 27 pS K(+) channel inhibited by aldosterone. CONCLUSION: Intermediate conductance K(+) channels (KCNN4) present in the basolateral membranes of human colonic crypt cells are a target for the non-genomic inhibitory effect of aldosterone, which involves stimulation of Na(+):H(+) exchange, thereby reducing the capacity of the colon for Cl(-) secretion.

Use of this site is subject to the following terms of use